• 项目
首页>>文章列表 >>行业研究 >>金准产业研究 半导体行业的战略机遇与制胜策略分析报告(中)

金准产业研究 半导体行业的战略机遇与制胜策略分析报告(中)

发布日期:2019-05-06

三、人工智能芯片竞赛开启

3.1人工智能芯片主导地位之争

人工智能框架大致可分为三个层面。基础设施层面包括核心的人工智能芯片和大数据,这是技术层面的传感和认知计算能力的基础。应用层面处于最顶层,提供无人驾驶、智能机器人、智慧安防和虚拟助手等服务。人工智能芯片是人工智能技术链条的核心,对人工智能算法处理尤其是深度神经网络至关重要。

“深度”指神经网络模型中的层级和节点数量。近年来,层级之间的复杂程度以及节点数量呈现指数级增长,这对计算力提出了极大的挑战。传统的中央处理器虽然在处理一般工作负荷——尤其是基于一定规则的工作——方面的性能较为突出,但现在已经难以满足人工智能算法的并行计算要求。

解决并行计算问题主要有两种方法:第一,在现有的计算架构上添加专用加速器;第二,完全重新开发,创造模拟人脑神经网络的全新架构。第二种方法仍处于初期开发阶段,不适合商业应用。因此,目前主要采用的方法是添加人工智能加速器。多种类型的人工智能芯片均可以实现加速,主流加速器包括图形处理器、现场可编程门阵列,以及专用集成电路,这包括张量处理器、神经网络处理器、神经网络处理器、矢量处理器和大脑处理器等变体。每种人工智能芯片都有其自身的优势和劣势。

于处理执行图形密集型任务(如游戏)的图形处理器以并行计算为设计理念,拥有出色的性能,适用于需要进行大量并行计算的深度学习人工智能算法。这个新功能使图形处理器成为人工智能硬件的绝佳选择。目前,图形处理器广泛应用于云和数据中心进行人工智能训练,同时也应用于汽车和安防领域。图形处理器是目前应用最广、灵活性最高的人工智能芯片。

现场可编程门阵列是一种可编程阵列,适用于希望根据自身需求重新编程的客户。现场可编程门阵列的特点是开发周期短(相较于专用集成电路)、功耗低(相较于图形处理器)。然而,灵活性高的特点导致其成本相对较高。现场可编程门阵列可同时兼顾效率和灵活性,尤其是在未决定使用何种人工智能算法的情况下。这样,供应商能够根据不同应用优化定制芯片,同时避免因采用专用集成电路方法而导致的成本和技术过时等困境。

另一方面,专用集成电路人工智能芯片拥有人工智能应用的专用架构。基于专用集成电路的人工智能芯片具有多种变体,包括张量处理器、神经网络处理器、矢量处理器和大脑处理器等,用于处理各种不同的计算密集型、基于规则的工作,具有效率高、性能出众以及中央处理器所具有的灵活性等特点。相较于图形处理器和现场可编程门阵列,专用集成电路人工智能芯片通常效率更高、尺寸更小、功耗更低。然而,专用集成电路芯片的开发周期更长、灵活性更低,导致其商业化应用进展缓慢。

深度学习有两种完全不同的人工智能部署方式:训练和推理。人工智能基于大数据“训练”神经网络模型,利用训练数据集获取新训练好的模型。这些新训练好的模型随后便被赋予新的能力,根据新的数据集进行“推理”得出结论。

因为需要将庞大的数据集应用到神经网络模型中,因此训练阶段需要大量的计算能力。这就要求具有先进并行计算能力的高端服务器能够处理大量高度并行的各类数据集。因此,这一阶段的工作通常利用云端硬件设备完成。而推理阶段既可以在云端完成也可以借助边缘设备(产品)进行。与训练芯片相比,推理芯片需要更全面地考虑功耗、延时和成本等因素。

人工智能芯片创新刚刚起步,供应商在芯片加速方面采取的办法各不相同。例如,谷歌选择了专用集成电路的路线,而微软则已证明采用现场可编程门阵列亦可获相当抑或更好的结果。同时,赛灵思、百度和亚马逊均在努力减少应用专用集成电路的传统障碍。

3.2人工智能芯片将实现爆发式增长

2022年,人工智能芯片市场在整个人工智能市场中的占比预计超过12%,复合年均增长率达到54%。美洲地区将引领全球人工智能市场,欧洲、中东及非洲地区和亚太地区紧随其后。2022年,美洲地区将占据主导市场地位。

云端是人工智能芯片最大的细分市场,原因在于数据中心为提升效率,降低运营成本并改善基础设施管理,对人工智能芯片的采用持续增长。特别需要指出的是,人工智能训练市场的规模将达到约170亿美元,其中云端推理芯片市场的规模将达到70亿美元。从产品类别来看,图形处理器已经成为人工智能芯片的主流趋势,拥有超过30%的市场份额,高于其他所有产品类别。

3.3网络边缘人工智能芯片方兴未艾

人工智能芯片不仅可以部署在云端,还可以应用于多种网络边缘设备,如智能手机、无人驾驶汽车以及监控摄像头。应用于网络边缘设备的人工智能芯片多为推理芯片,且专业程度越来越高。金准产业研究团队预计,到2022年,人工智能推理芯片市场的规模将增至20亿美元,复合年均增长率达到40%。

3.3.1人工智能芯片推升智能手机平均售价

产品成本的不断上涨将使人工智能芯片供应商获益。例如,苹果公司的A11芯片成本上升到了27.50美元。人工智能芯片的成本增长将使智能手机价格上涨,让智能手机制造商获得更多收入。人工智能芯片的应用亦已从高端机型扩展到中端机型,这亦有可能为智能手机供应商带来更多收入。

智能手机的推理人工智能芯片现已成为智能手机制造商(如苹果、三星和华为)、独立芯片供应商(如高通与联发科)以及知识产权授权供应商(如ARM和新思科技)三方竞争的焦点。智能手机制造商的人工智能芯片通常均针对自身手机产品进行了优化以提升性能和用户体验。然而,独立芯片供应商所生产的芯片的技术参数可能会优于市场中其他竞争对手的产品。

3.3.2无人驾驶是人工智能芯片的理想应用领域

无人驾驶不仅仅是一个复杂的人工智能应用场景,而且还具有重要意义。金准产业研究团队预计,无人驾驶预计将有力推动人工智能推理芯片应用,使人工智能推理芯片市场的规模增至50亿美元,复合年均增长率达到40%。

传感、建模与决策是无人驾驶的三大必备流程,每一个流程都涉及推理芯片应用。无论是环境传感或障碍物躲避,无人驾驶对人工智能芯片的计算力都提出了很高的要求。

由于存在延迟等限制,在理想情况下,无人驾驶的计算应该在网络边缘而非云端完成,因为无人驾驶要求准实时决策。以丰田无人驾驶汽车为例,L5无人驾驶需要每秒12万亿次的运算能力,但目前大多数芯片只支持每秒2-3万亿次的运算。显然,人工智能芯片迫切需要迁移至网络边缘,而非在云端开展主要计算工作。

整车厂正在对供应商提供的芯片进行测试,以找到最合适的候选芯片。大型整车厂更愿意自行建设无人驾驶平台并单独采购人工智能芯片,但多数历史较短的整车厂却更倾向于购买完善的无人驾驶平台。随着时间的推移,能够从当地加工中获益的人工智能应用也许会越来越多,如苹果公司的刷脸认证方式FaceID。

3.3.3智能监控系统需求高涨

在人工智能技术的支持下,监控系统的智能程度不断升级。过去十年内,监控系统行业经历了三个重要的转型阶段。第一,“高分辨率”阶段,即系统能够录制超清视频。第二,“联网”阶段,即系统实现联网和互联。

人工智能时代的到来可以被视为第三次转型浪潮。人工智能推理芯片现在可以应用于边缘网络摄像机,以实时处理视频数据。由于网络边缘每天产生大量数据,此类应用可以节省云端存储空间,提升监控系统性能。

3.3.4中国已成为人工智能芯片的热土

在中国,人工智能芯片融资活动一直非常活跃,相关并购活动也日益增多。其中一个典型的案例是国际巨头赛灵思对在机器学习、深度压缩、网络剪枝和神经网络系统级优化领域拥有领先技术初创企业深鉴科技的收购。以阿里巴巴、百度和华为为首的领先科技公司也逐步进入这一竞争领域。值得注意的是,华为已经掀起了智能手机领域的人工智能芯片竞争。此外,一些比特币矿机设备制造商也开始进军人工智能优化领域。

中国的人工智能企业通常能够快速识别可行的人工智能商业应用,尤其是商业模型创新和快速实施。然而,中国企业普遍缺少开发原创人工智能模型的能力,国内的人工智能研究大多关注调整和完善现有的模型,而非创造原创、系统性的人工智能框架。此外,与美国等其他国家相比,中国的人工智能相关培训亦非常有限。

3.3.5把握人工智能发展趋势

毫无疑问,人工智能的崛起为半导体设备行业尤其是人工智能芯片带来了新的机遇。已经或将要进入人工智能系统领域的半导体企业应紧跟以下主要趋势,保持市场竞争优势。

专业化是人工智能芯片的关键:未来,人工智能芯片企业不应只满足于充当硬件供应商,而应该深入了解顾客需求,提供合适的产品。如今,顾客不仅仅需要具备一定人工智能功能的通用型芯片;他们希望人工智能芯片能够以合理的成本满足其商业需求,人工智能芯片企业需要权衡考虑功耗、性能和成本三大因素。计算密度(即每消耗一单位能量所能提供的计算能力)将成为人工智能芯片供应商的核心竞争力。

从云端迁移至边缘:网络边缘的机遇不断增多,很多大型企业正在从云端转移至边缘,以提供从训练到推理工作的全方位人工智能解决方案。值得注意的是,现在大多数人工智能系统均以冯诺依曼体系结构为基础,处理和存储分别单独进行,导致人工智能极易耗电,神经网络被限制于云端。企业正在努力构建一种新的架构,使处理器和存储器实现更紧密的耦合,从而提高设备性能和能源效率。方法是在存储器中增添新的功能,使设备在不更换处理器的情况下变得更加智能。半导体行业应该尝试这类设计,以推动人工智能顺利从云端迁移至边缘。

选择合适的半导体加工技术:根据摩尔定律,中央处理器需要应用最先进的工艺技术,而与此不同而是,人工智能采用的是并行处理方式,因而人工智能芯片并不一定需要采用最先进的工艺技术。例如,40纳米级和28纳米级加工技术已足以提供每秒1万亿次运算的计算力。此外,上一代加工工艺还可以利用成熟的工具组件和基础模块。许多大型代工厂均可根据性能和功耗提供从28纳米级到7纳米级等多种先进的工艺技术。半导体供应商应该根据计算力、功耗和形状参数等标准选择合适的半导体工艺技术。

软件工具支持不可或缺:半导体企业对标准的开源软件框架的支持程度是赢得人工智能竞争的关键,对于试图追赶半导体芯片已经支持几乎所有深度学习软件和工具的领先企业的挑战者尤其如此。要在市场竞争中存活下来,半导体供应商至少能够支持主要的开源软件框架,如Tensor Flow、Caffe2、Theano、CNTK、MXNet和Torch等,同时还需为开发者提供辅助应用开发的工具。未来,半导体供应商需要投资于软件,并与软件开发商合作获取其人工智能设备架构。用于处理神经网络的软件框架数量逐渐增多,且未来几年内将陆续开发和推出更多软件框架,因此新加入者仍有较大发展空间。

把握人工智能芯片之外的机遇: 人工智能处理能力的实现并不仅仅依靠人工智能芯片。在人工智能的发展过程中,存储器也是一个十分重要的部件,因为高吞吐量的并行处理会给存储器系统中的数据带宽带来多重压力。对人工智能系统存储器的巨大需求将为存储器供应商创造机遇。此外,随着人工智能系统的扩张,各子系统及设备之间的互联性能可能面临发展瓶颈。因此,半导体供应商应把握机遇,创造出实现高速互联的设备,满足系统之间的大量数据流动需求。此外,虽然人工智能芯片可内置多个处理器,使并行计算能力达到最大化,但如此便导致芯片尺寸变大。这对可能需要定制冷却解决方案的热力和高压电源管理提出了巨大的挑战。封装供应商可以借此机会开发更薄、散热更少的产品,为客户打造性价比更高的解决方案。

3.4并购活动回归理性

半导体并购活动已经经过巅峰期,汽车、人工智能以及网络/数据中心等正在成为最受欢迎的新兴垂直领域。日本和韩国一直致力于振兴国内半导体行业,他们积极参与美国和欧洲中型企业收购,并与中国展开合作。同时,围绕知识产权和国防安全问题的争议还将抑制中国企业走向全球化的进程。中国收紧对美国高科技公司的境外投资成为新常态,全球并购市场规模整体缩水。尽管如此,半导体大型企业集团仍在各垂直领域寻找拥有高市场份额和利润的潜在目标。

3.4.1并购活动进入稳定期

2016年,全球半导体并购交易额曾达到1,200亿美元的峰值。2017年,半导体行业并购交易额大幅下跌。除了以往交易导致并购目标减少以外,欧洲和美国收紧监管审查也是一大重要原因。由于单笔交易额增加,2018年全球并购交易额再次增长。例如,美国博通公司以179.9亿美元收购了CATechnology。

2014年至2015年,东亚地区(中国、日本、韩国以及中国台湾)的并购交易量迅速增长,交易额突破220亿美元。但经过几年的快速扩张后,2017年和2018年的并购活动有所停滞。2017年,东亚地区的半导体并购交易量下降1%,交易额仅增长2%。

3.4.2中国国内并购活动遥遥领先

无论是从交易量或是交易额来看,中国无疑是半导体并购活动最活跃的地区。从2014年至2018年,中国半导体行业并购交易量的全球占比从48%增至72%,复合年均增长率高达18%。

过去五年里,中国半导体行业快速发展的最主要原因是有利的政府政策。中国目前是全球最大的半导体芯片进口国,政府的总体战略是减少对外国进口产品的依赖,发展国内的半导体行业基础。这一政策促使中国企业纷纷进军半导体行业,并通过收购获取先进技术。

毫无疑问,中国大陆是东亚地区境内并购活动最活跃的地区。从2014年至2018年期间,并购交易量的复合增长率高达24%。例如,2018年阿里巴巴收购了杭州中天微系统有限公司。在此之前,阿里巴巴已经投资了五家芯片公司:寒武纪、Barefoot Networks、深鉴科技、耐能和翱捷科技。

相较于中国大陆,日本、韩国和中国台湾的并购活动相对平缓。并购交易的主要目的是提高市场地位,增加市场份额,以及寻找新兴应用。

3.4.3境外并购喜忧参半

总体而言,自2016年以来,东亚地区的跨境并购交易量出现下滑,尤其在美国加强了对寻求前沿技术的中国企业的调查之后。2017年,白宫发布了有一份题为《确保美国在半导体行业长期领先地位》的报告,指出中国的半导体政策对美国产生的潜在威胁,并建议美国政府采取措施防止或者严格限制中国企业的收购,同时收紧对重要半导体知识产权流动的法规限制。但是,尽管政府的并购审查日益加强,北美和欧洲仍是东亚地区半导体企业的主要并购目的地。

3.4.4并购动机明确

如今,半导体企业参与境内外并购主要出于以下四个原因:收购先进技术、提高市场地位并增加市场份额、寻找前沿应用以及扩大行业供应链。

收购先进技术:中国半导体行业严重依赖进口。2018年,中国的科技公司采取了一些紧急措施。例如,中国半导体清洗设备公司北方华创收购了位于美国宾夕法尼亚州的半导体晶片清洗公司Akrion,将其业务扩展至硅片制造、微机电系统和封装领域。这是自特朗普政府上台以来,美国外国投资委员会批准的首例收购案。

尽管拥有更先进的半导体技术,但日本、韩国和中国台湾仍希望通过并购掌握半导体相关技术。2018年6月,台湾联华电子斥资5.19亿美元收购了日本晶圆代工企业三重富士通半导体股份有限公司84%的股权,以获得丰富的集成电路生产经验。与此同时,台积电以600万美元的价格收购了美国安森美半导体公司,以扩大半导体应用组合,强化核心业务。

提高市场地位:通过收购竞争对手,企业能够在增加市场份额和提高盈利能力方面发挥协同作用。2018年,上海威尔半导体以21.8亿美元收购了北京超视微科技85%的股份和北京全视科技96%的股份,以获取全视的高端技术和超视的成本控制能力。并购也能为快速进入新市场——尤其是海外市场——铺平道路。韩国代工厂海力士投资7,500万美元收购了中国代工企业海进半导体(无锡)50%的股份,以扩大其代工业务规模。中国公司华大半导体也收购了专注集成电路设计的加拿大公司Solantro Semiconductor,以便在渥太华开展并推广业务。

进入新兴领域:人工智能、无人驾驶等新兴技术的快速发展极大地刺激了半导体芯片需求。芯片企业正通过并购将其业务领域扩展至新兴领域。例如,三星电子收购了全球最大的联网智能汽车零部件供应商之一哈曼公司。2018年,日本半导体开发和制造公司瑞萨电子收购了美国公司艾迪悌,以增强其在无人驾驶汽车技术领域的竞争力。

扩大行业供应链:从上游到下游,半导体行业链包括设计、制造、封装和测试环节。通过进军行业价值链上的其他环节,传统企业不仅能够创造新的收入流,还能产生协同效应。2018年,中国领先的嵌入式中央处理器芯片和解决方案供应商英创半导体通过收购北京西城半导体的部分股权,进军高端存储芯片业务领域。

3.4.5警惕并购风险

尽管并购有很多好处,但并购前和并购后可能出现很多问题,包括目标判断失误、未开展详尽的尽职调查以及执行不力等。

并购目标筛选与评估相关风险

中国科技企业在海外并购中面临诸多政治和法律风险。欧美多国政府对海外收购或投资采取了非常严格的限制措施,尤其是针对半导体这样的高科技产业。未来,中国企业将很难收购拥有高新技术和巨大商业价值的高科技企业,因此选择并购目标的难度将不断加大。此外,虽然中国企业可以通过收购外国公司,获得无形资产(如技术和品牌),提升行业水平,但由于通常需要支付较高溢价,中国企业将面临巨大的经营与财务风险。高财务杠杆是中国企业海外并购最显著的特征,而高杠杆必然会带来高风险。如果并购失败或企业整合失败,并引致亏损,并购企业将面临巨大的财务风险。

财务信息与尽职调查相关风险

与国内并购项目相比,海外并购项目在财务信息质量、解读、供应方式以及验证等方面均存在差异。因此,企业应根据这些差异合理调整尽职调查程序。

参与并购的外国半导体企业并购需要关注有关股东背景的风险:

1)由创始人管理的中小型企业:这些公司通常不够关注日常会计工作,财务数据较混乱,且未聘请知名会计师事务所来审计财务状况。因此,很难从书面材料中获取财务数据,并进行业务分析。

2)私募股权基金管理企业:私募股权基金倾向于在业务扩张初期就进行规划,并在业绩较好时出售。因此,其财务数据详尽、完整,相关的书面材料齐全,财务数据真实性高。然而,良好的历史财务业绩通常也可以借助短期激励措施实现。因此,利润高的企业也可能发展前景有限。

海外并购与整合相关风险

在交易和整合的过程中,跨境合并与收购面临很多挑战,包括重组的复杂程度、缺少当地整合资源和团队、外部利益相关者管理与人才流失、管理信息系统的差异以及文化、薪资和福利制度差异。具体来讲,包括:

文化与补贴福利制度差异:不同的绩效评估体系会对员工绩效产生不同影响。一般来说,本地化程度越高的企业基本工资越低,销售佣金越高;而外资企业的基本工资普遍较高,但销售佣金较低;因此,当两家公司合并时,这些差异可能导致工资和补贴不均等的问题,从而影响员工工作热情。

人才流失与管理:并购可能导致核心管理人员流失,影响公司业务的正常运营。核心人员包括:掌握关键技术/流程的人员以及掌握政府和客户资源的人员。担任多个职务的高级管理人员更能抵抗企业重组带来的冲击。经过重组后,企业可能会遣散员工,并更改领导人员职责。

重组的复杂程度与链反应:国外的劳动法规非常支持员工的利益;如果重组可能引发社会动荡,当地政府可能会干预工厂的搬迁/重组计划。

缺少监督重组过程的当地项目团队:并购与重组项目通常由公司总部主导,但缺少当地团队的参与可能使当地出现的问题不能被提交至筹备委员会,并得到妥善解决;缺少当地团队的领导,重组计划实施的有效性将大大降低。但语言和文化障碍可能导致项目团队不能与当地员工进行有效沟通。

外部利益相关方管理低效:顾客与供应商可能认为重组将使公司业务面临不确定性,因此对合作失去信心,或者对建立未来的合作伙伴关系感到迷茫;供应流中断和顾客流失可能难以逆转;竞争对手可在重组磨合期内抓住机会争夺客流。

管理信息系统差异:大多数中国企业采用本土企业资源规划(ERP)系统,如UFI,这会在一定程度上妨碍公司与使用Oracle/SAP企业资源规划系统的公司共享信息,进而导致信息接收和处理延迟。

四、深思熟虑进军中国市场

4.1半导体:跨国企业的摇钱树

金准产业研究团队预计中国将继续保持世界第一大半导体消费市场的地位。2018年,中国的半导体消费占全球总量的41%。人工智能的商业化、物联网应用和5G将进一步推动半导体消费增长。到2024年,中国在全球半导体消费中的占比将达到57%。

因此,中国成为许多全球顶级半导体企业的收入来源就不足为奇了,其中几家企业过半的收入源自中国。例如,高通65%的收入都来自中国。

4.2没有万能的市场准入方案

试图进入中国市场的跨国企业应当考虑多重因素,如政策、技术、市场营销、物流和全球战略。对于跨国企业来说,在进入中国市场之前,找准定位并制定最佳的市场准入战略也很重要。显然,正确的方法并不止一种,但总的来说,跨国企业的技术现状与中国国内的技术现状将发挥重要作用。如果跨国企业拥有技术优势,其将拥有更强的议价能力,且不愿意分享知识产权。然而,跨国企业可能会完全避免国内企业已发展强大的情况。例如,由于中国的半导体高端设计和制造业相对薄弱,竞争不够激烈,跨国企业通常会以设立地区办事处或外商独资企业的方式进入中国市场。在封装、测试和低端设计等中国相对擅长的领域,跨国企业可能会选择成立合资企业,或者直接避开中国市场。

地区办事处:这种模式一般适用于技术完全由跨国企业垄断的行业领域,几乎没有共享知识产权的动机。例如,高通在北京、上海、深圳和西安设立了地区办事处。

外商独资企业:领先的半导体跨国企业热衷于通过设立外商独资企业满足中国巨大的半导体需求。来自台湾、韩国和美国的代工厂纷纷在中国设立新厂,以增强生产力。例如,台积电将在南京设立一家产量将达到2万片/月的12寸晶圆厂。海力士也计划在西安建立一家产量达到16.8万片/月的工厂。

考虑到本土半导体企业已经成为封装和测试领域的佼佼者,跨国企业可以通过与本土企业合作,进一步提升技术能力。2016年,AMD与中国先进技术企业南通富士通微电子股份有限公司合作成立合资企业。这家合资企业兼并了AMD在苏州和马来西亚槟城的研发团队以及先进的设备资产,成为了全球领先的封装与测试企业。

总之,跨国企业需要考虑其竞争力和中国市场的战略价值。与国内企业不同的是,跨国企业在中国市场的发展计划与其全球战略息息相关,全球战略决定了跨国企业在中国市场的未来发展。大多数跨国企业会选择进入其有较强竞争力和在中国市场有较高战略价值的领域。但企业也可以有其他选择。例如,如果一家跨国企业拥有较强竞争力,但中国市场的战略价值较低,可以采取“机会主义”的做法,即选择需要最小增量投资的优势业务。另一方面,如果市场竞争已经很激烈,但中国市场仍有较高战略价值,企业需要积极寻找本地化机遇,以实现价值最大化。最糟糕的情况是,当竞争力和战略价值都较低时,则跨国企业应该退出市场。

例如,一些跨国企业放弃中低端手机业务,转而关注先进的高端手机业务。同时,其他跨国企业还与本土信息技术巨头合作,实现硬件和软件技术本地化,以避免监管限制。此外,很多跨国企业已经退出中国手机市场,并撤回了其在合资企业的投资。

五、数字化是增强竞争力的关键

如今,半导体企业必须比以往任何时候都要更快、更灵敏地保持竞争力。人工智能、大数据等新技术的商业化正不断推动企业实施数字化转型,实现智能生产、智能管理和智能销售。通过投资数字化基础设施来提高生产力、开发新的业务渠道,企业将有机会克服发展障碍,并通过数字化找到新的发展动力。

实施数字化转型已经成为很多企业应对挑战的主要办法。例如,零售行业的数字化转型已经渗透到价值链的各个角落,包括以消费者为导向的需求预测、个性化营销、购买体验和智能客户服务。数字化转型的主要目的是持续提升效率,有效吸引顾客。

随着芯片加工能力、云服务推广、传感器以及其他硬件价格下跌,计算能力大幅提升实施数字化转型的基础条件已经成熟。从应用的角度来看,科技公司已为市场提供多种用于提高数据利用率,提升经营效率并减少生产成本的数据分析工具。

在整个产品生命周期中,很多半导体企业已经开始利用数字化工具获得竞争优势。例如,半导体行业已经将人工智能和分析工具应用在设计、制造、封装和测试等环节的应用延伸至管理。

5.1人工智能助力效率提升

人工智能技术在半导体制造和企业运营的各个方面将发挥不可或缺的作用。半导体懂得制造过程会产生大量数据,传统的数据分析方法只能利用部分结构化数据进行事后分析。但基于人工智能的智能分析工具能够对数据集进行全方位的实时分析,从而提升生产和管理效率。

设计:人工智能够更改整个设计流程。半导体设计的每一个步骤都会产生大量的参数。不同于传统的分析工具,新的分析技术可帮助半导体设计人员综合分析所获取的数据,吸取经验教训,分析过去的数据,并从数据和结果中提炼关系。无论是高频数据或是中低频数据,都可以借助数据组合发现潜在错误并提升产量,从而帮助了解新生成的数据,并通过更改某些参数,制定决策或纠正错误。此外,根据数据制定决策可以避免设计团队与流程团队之间出现沟通障碍。

制造:在制造过程中,各个流程产生的数据可以共享,直接分析,并报告错误,以减少可能犯错的人工检查,从而实现效率提升。人工智能系统每分钟能够对数据进行上千次检查,约相当于人工检查效率的600倍。人工智能监测与维护系统连接产生数据的整个过程,能够实时预测设备故障,从而减少生产中断引发的损失。